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Figure 1 in manuscript.

Databases were searched and the title and abstract of search results were examined. We identified 73 potential studies on the basis of information provided in the title and abstract. In many cases, the study design and/or study population had been inadequately described in the title and/or abstract so a more detailed review of these papers was warranted. After reading all 71 papers, we found that a large number of studies (n = 38) did not meet the inclusion criteria (Figure 1). 
INCLUSION CRITERIA

Details of inclusion and exclusion criteria can be found on pages 7-9 of the manuscript. Briefly, the criteria for inclusion of studies were population-based prospective studies and population-based treatment to reinfection studies, with antibodies measured at baseline. The criterion for inclusion of participants was individuals living in malaria endemic areas.

In total 30 studies were excluded outright (Figure 1): 

· 15 studies analyzed antibody and malaria data collected from cross-sectional studies (including serial cross-sectional studies) 


 ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 
[1-15]
. These studies were excluded because a temporal relationship between antibodies and malaria cannot be established from data collected at the same time point

· 6 were studies that recruited individuals based on their clinical status 


[16-21] ADDIN EN.CITE  and were excluded because participants would not be representative of the general population

· 3 were mother/infant studies 


[22-24] ADDIN EN.CITE  and were excluded to remove the confounding effect of placental-transferred maternal antibodies

· 3 studies were excluded because they were sero-prevalence surveys and did not relate antibody response to P. falciparum malaria outcome 
 ADDIN EN.CITE 
[25-27]
 

· 2 studies were excluded because outcome was clinical failure of anti-malarial treatment 
 ADDIN EN.CITE 
[28,29]

· 1 study measured IgG responses to undefined regions of antigens [30].

Of the 37 studies that did not meet inclusion criteria, we also identified 8 studies that contained data 
 ADDIN EN.CITE 
[31-38]
 and could potentially be reanalyzed to meet our inclusion criteria:

· 3 studies related antibody data to both retrospectively and prospectively collected data 
 ADDIN EN.CITE 
[31-33]

· 1 study had restricted analysis to those who were parasite positive but had collected data on whole study cohort 
 ADDIN EN.CITE 
[34]

· 4 studies had analyzed data as differences in antibody levels at baseline in those who subsequently developed P. falciparum malaria and those who did not 
 ADDIN EN.CITE 
[35-38]

In addition, we identified 5 studies that met inclusion criteria but not quality criteria regarding the definition of symptomatic malaria and could potentially be reanalyzed to meet our quality criteria (Figure 1). Definitions included:
· fever/history of fever plus a P. falciparum parasitaemia of any density 
 ADDIN EN.CITE 
[39-41]
, 

· nine common symptoms, but fever definition not reached in all cases 
 ADDIN EN.CITE 
[42]
 

· P. falciparum positive plus fever and clinical symptoms and in absence of symptoms, >5000/ul for children and >2000/ul for adults [43]
To maximize the number of included studies, we wrote to the corresponding author of the 13 studies that could potentially be reanalyzed 


[31-43] ADDIN EN.CITE . Three corresponding authors provided data for inclusion in the meta-analysis 


[34,36,42] ADDIN EN.CITE . The remainder either responded saying that the data was unavailable, or that it was not in a format for reanalysis, or did not respond to three separate emails. 
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Table A. Details of MSP-1 recombinant antigens featured in this systematic review

	Author, year [reference]
	Allele/ Strain (region)
	Expression System
	Tag
	Sero-prevalence 

	MSP-119
	
	
	
	

	Cavanagh, 2004


[43] ADDIN EN.CITE 
	Wellcome (1631-1726)
	E. coli
	GST
	56%

	Conway, 2000


[31] ADDIN EN.CITE 
	Wellcome (1631-1726)
	E. coli
	GST
	63%

	Dodoo, 2008[44]
	Palo Alto (1588-1760)
	Baculovirus
	His
	DNS

	Egan, 1996


[36] ADDIN EN.CITE 
	MAD20 (1631-1744)
	S. cerevisiae
	His
	17%(SL), 9%(G)

	John, 2004[53]
	MAD20 (1726-1744)
	S. cerevisiae
	His
	50%

	Nebie, 2008


[29] ADDIN EN.CITE 
	Uganda Palo Alto (20-43, 1615-1723)
	Baculovirus
	His
	DNS

	Okech, 2004


[39] ADDIN EN.CITE 
	Wellcome (1631-1744)
	E. coli
	GST
	60%

	Osier, 2008


[59] ADDIN EN.CITE 
	Wellcome (1631-1726)
	E. coli
	GST
	48%

	Perraut, 2003


[56] ADDIN EN.CITE 
	Palo Alto (DNS)
	Baculovirus
	GST
	79%

	Perraut, 2005


[50] ADDIN EN.CITE 
	Palo Alto (DNS)
	Baculovirus
	GST
	77%

	Stanisic, 2009[55]
	3D7 (1631-1744)
	E. coli
	His
	97%

	Wang, 2001


[57] ADDIN EN.CITE 
	Wellcome (1631-1726)
	E. coli
	GST
	96%

	MSP-1-EGF1 and EGF2
	
	
	

	Dodoo, 1999


[41] ADDIN EN.CITE 
	MAD20 (1631-1678) and (1674-1726)
	E. coli
	GST
	16%, 4%

	Egan, 1996


[36] ADDIN EN.CITE 
	MAD20 (1631-1678) and (1674-1726)
	E. coli
	GST
	13%, 3% (SL), 6%, 3% (G)

	MSP-142
	
	
	
	

	Al-Yaman, 1996


[49] ADDIN EN.CITE 
	Ugandan Palo Alto (1333-1705)
	Baculovirus
	DNS
	DNS

	MSP-1-block 1
	
	
	
	

	Cavanagh, 2004


[43] ADDIN EN.CITE 
	MAD20 (21-53)
	E. coli
	GST
	1.4%

	Conway, 2000


[31] ADDIN EN.CITE 
	MAD20 (21-53)
	E. coli
	GST
	3%

	MSP-1-block 2 (Full length)
	
	
	

	Cavanagh, 2004


[43] ADDIN EN.CITE 
	K1 (54-144), MAD20 (54-112), RO33 (54-106)
	E. coli
	GST
	14%, 20%, 6%

	Conway, 2000


[31] ADDIN EN.CITE 
	3D7 (54-144), MAD20 (54-144), RO33 (54-144)
	E. coli
	GST
	22%, 24%, 15%

	Gray, 2007


[40] ADDIN EN.CITE 
	3D7 (54-144), MAD20 (54-144), RO33 (54-144)
	E. coli
	GST
	17%, 19%, 17%

	Osier, 2008


[59] ADDIN EN.CITE 
	3D7 (54-144), MAD20 (54-144), RO33 (54-144)
	E. coli
	GST
	24%, 16%, 24%

	Tolle, 1993


[54] ADDIN EN.CITE 
	RO33 (56-105)
	E. coli
	His
	DNS

	MSP-1-block 2 (flanks)
	
	
	

	Cavanagh, 2004


[43] ADDIN EN.CITE 
	K1 (54-63, 120-144), MAD20 (54-71, 99-112)
	E. coli
	GST
	8%, 3%

	Gray, 2007


[40] ADDIN EN.CITE 
	K1 (54-63, 120-144), MAD20 (54-71, 99-112)
	E. coli
	GST
	17%, 17%

	Polley, 2003


[32] ADDIN EN.CITE 
	K1 (54-63, 120-144), MAD20 (54-71, 99-112)
	E. coli
	GST
	10%, 22%

	MSP-1-block 2 (repeats)
	
	
	

	Cavanagh, 2004


[43] ADDIN EN.CITE 
	3D7 (64-96), MAD20 (72-98)
	E. coli
	GST
	13%, 8%

	Gray, 2007


[40] ADDIN EN.CITE 
	3D7 (64-96), MAD20 (72-98)
	E. coli
	GST
	14%, 17%

	Polley, 2003


[32] ADDIN EN.CITE 
	3D7 (64-96), MAD20 (72-98)
	E. coli
	GST
	10%, 14%


Region shows amino acid positions. If no position is given then BLAST searches were performed with amino acid sequence. Abbreviations: Ct, C-terminal; DNS, data not shown in original manuscript; G, The Gambia; GST, Glutathione S-Transferase; His, histadine; MSP, Maltose-Binding Protein; NA, Not Applicable; SL, Sierra-Leone. Please see main manuscript for references. 

Table B. Details of other recombinant antigens featured in this systematic review

	Author, year

[reference]
	Allele/ Strain (region)
	Expression System
	Tag
	Sero-prevalence 

	MSP-2
	
	
	
	

	Al-Yaman, 1995


[48] ADDIN EN.CITE 
	3D7, FC27 ("Near to full length")
	E. coli
	His
	DNS

	Metzger, 2003


[33] ADDIN EN.CITE 
	3D7-like [T9/96] (22-286), FC27-like [Dd2] (22-247), K1 (Ct-207-263)
	E. coli
	GST
	55%, 52%, 5.2%

	Polley, 2006


[46] ADDIN EN.CITE 
	3D7-like [CH150/9] (1-184), FC27-like [Dd2] (22-247)
	E. coli
	GST
	78%, 79%

	Scopel, 2007


[58] ADDIN EN.CITE 
	3D7 (44-104), FC27 (67-220)
	E. coli
	GST
	6%, 22%

	Sarr, 2006[60]
	3D7 (19-249), FC27 (19-241)
	E. coli
	His
	81%, 95%

	Stanisic, 2009[55]
	3D7 (1-272), FC27 (1-272)
	E. coli
	His
	86%, 83%

	Taylor, 1998


[37] ADDIN EN.CITE 
	3D7-like [T9/96] (22-286), FC27-like [Dd2] (22-247)
	E. coli
	GST
	18%, 13%

	MSP-3
	
	
	
	

	Dodoo, 2008[44]
	FC27 (Ct-181-276)
	SP
	NA
	DNS

	Gray, 2007


[40] ADDIN EN.CITE 
	K1 (2-379), 3D7 (2-354) 
	E. coli
	MBP
	25%, 15%

	Meraldi, 2004


[28] ADDIN EN.CITE 
	3D7 (Ct-154-249)
	SP
	NA
	57%

	Nebie, 2008


[30] ADDIN EN.CITE 
	DNS (Ct-181-276)
	DNS
	DNS
	DNS

	Nebie, 2008


[29] ADDIN EN.CITE 
	FC27 (Ct-181-276)
	SP
	NA
	DNS

	Osier, 2007


[47] ADDIN EN.CITE 
	K1 (2-379), 3D7 (2-354), 3D7 (Ct-234-354)
	E. coli
	MBP
	41%, 54%, 24%

	Polley, 2007


[34] ADDIN EN.CITE 
	K1 (2-379), 3D7 (2-354), 3D7 (Ct-234-354)
	E. coli
	MBP
	64%, 61%, 22%

	MSP-4 and MSP-4-EGF 
	 
	 
	 

	Wang, 2001


[57] ADDIN EN.CITE 
	D10 (1-272) and D10 (204-248)
	E. coli
	His
	83%

	AMA-1
	 
	 
	 
	 

	Dodoo, 2008[44]
	FVO (25-545)
	P. pastoris
	His
	DNS

	Gray, 2007


[40] ADDIN EN.CITE 
	3D7 (85-531)
	E. coli
	His
	44%

	John, 2005


[52] ADDIN EN.CITE 
	3D7 (1-622)
	P. pastoris
	His
	88%

	Nebie, 2008


[29] ADDIN EN.CITE 
	FVO (25-545)
	P. pastoris
	His
	DNS

	Polley, 2004


[45] ADDIN EN.CITE 
	FVO (25-544), 3D7 (85-531)
	P. pastoris, E. coli
	His
	67%, 70%

	Stanisic, 2009[55]
	3D7 (85-531)
	E. coli
	His
	99.5%

	EBA-175
	
	
	
	

	John, 2005[53]
	3D7 (RII-145-760)
	P. pastoris
	None
	72%

	Okenu, 2000 


[38] ADDIN EN.CITE 
	3D7 (RII-144-753)
	Baculovirus
	His
	43%

	Osier, 2008


[59] ADDIN EN.CITE 
	3D7 (F2-461-753)
	Baculovirus
	GST
	74%

	GLURP
	
	
	
	

	Dziegiel, 1993


[35] ADDIN EN.CITE 
	DNS (R1-R2-489-1271)
	E. coli
	β-gala
	48%

	Dodoo, 2000


[42] ADDIN EN.CITE 
	F32 (R0-94-489), F32 (R1-489-705), F32 (R2-705-1178)
	E. coli
	His
	DNS

	Dodoo, 2008[44]
	F32 (R0-25-514)
	E. coli
	His
	DNS

	Lusingu, 2005


[51] ADDIN EN.CITE 
	DNS (R0-25-500)
	DNS
	His
	DNS

	Meraldi, 2004


[28] ADDIN EN.CITE 
	3D7 (R2-801-920)
	SP
	NA
	68%

	Nebie, 2008


[29] ADDIN EN.CITE 
	F32 (R0-25-514)
	E. coli
	His
	DNS

	Nebie, 2008 


[30] ADDIN EN.CITE 
	F32 (R0-94-489), F32 (R2-705-1178)
	E. coli
	His
	DNS


Region shows amino acid positions. If no position is given then BLAST searches were performed with amino acid sequence. Abbreviations: β-gala, β-galactosidase; Ct, C-terminal; DNS, data not shown in original manuscript; G, The Gambia; GST, Glutathione S-Transferase; His, histadine; MSP, Maltose-Binding Protein; NA, Not Applicable; SP, Synthetic peptide. Please see main manuscript for references.
Supporting information III: Supplementary Analyses - Association between anti-merozoite antibodies and incidence of P. falciparum reinfection and high density P. falciparum
MSP-1 

Two studies examined the association of MSP-119 antibodies with risk of high density P. falciparum infection. Stanisic et al (2009) showed a reduced risk of high density infection in those with high anti-MSP-119 levels (>66%tile versus <33%tile RR 0.47, 95%CI 0.25, 0.87, P = 0.019; 33-66%tile versus <33%tile RR 0.7, 95%CI 0.41, 1.2, P = 0.19) whereas Okech et al (2004) showed no evidence of an association (responders versus non-responders, RR 0.88 95%CI 0.45, 1.73) 


[39,55] ADDIN EN.CITE .


Pooled results of two studies showed no evidence of an association between IgG responses to MSP-119 and risk of reinfection (responder v non-responder RR 1.15, 95%CI 0.64, 2.07, P = 0.65) 


[52,57] ADDIN EN.CITE . Stanisic et al (2009) also showed no association with reinfection (>66%tile versus <33%tile, RR 1.17, 95%CI 0.77, 1.78, P = 0.46; 33-66%tile versus <33%tile, RR = 1.22, 95%CI 0.83, 1.79, P = 0.31) [55]. Weak evidence of an association was seen when examining anti-MSP-1-9 levels 
 ADDIN EN.CITE 
[56]
 (transformation if any not stated) and risk of reinfection (RR 0.97, 95%CI 0.94, 1.00, P = 0.0928). One additional study showed that MSP-1-block 2 (RO33) responders had increased risk of reinfection compared to non-responders (RR 2.37, 95%CI 1.4, 3.99, P = 0.001) 


[54] ADDIN EN.CITE .
MSP-2

Stanisic et al (2009) found no association between antibodies to MSP-2FC27 or MSP-23D7 and risk of reinfection (responders versus non-responders RR 1.07, 95%CI 0.69, 1.64, P = 0.77 and RR 0.85, 95%CI 0.52, 1.37, P = 0.5 respectively) [55]. No association with risk of high density infection was seen with either antigen (MSP-2FC27, responder versus non-responder RR 0.59, 95%CI 0.36, 1.03, P = 0.065; MSP-23D7, RR 0.66, 95%CI 0.35, 1.24, P = 0.2) [55].
AMA-1

One study showed no association of AMA-13D7 antibodies with risk of reinfection (>75%tile versus <75%tile, RR 0.74, 95%CI 0.41, 1.33, P = 0.32) whereas another showed increased risk of reinfection (>66%tile versus <33%tile, RR 1.64, 95%CI 1.11, 2.43, P = 0.013; 33-66%tile versus <33%tile, RR = 1.23, 95%CI 0.84, 1.82, P = 0.29) 


[53,55] ADDIN EN.CITE . No evidence of an association of anti-AMA-13D7 responses with risk of high density infection was found in another study (>66%tile versus <33%tile, RR 0.83, 95%CI 0.48, 1.44, P = 0.5; 33-66%tile versus <33%tile, RR = 0.76, 95%CI 0.44, 1.32, P = 0.33) [55].

Supporting information IV: MSP-1-EGF individual study estimates 

MSP-1-EGF1

Pooled results of MSP-1-EGF1 studies showed no association between antibody responders with protection against symptomatic P. falciparum (RR 1.06, 95%CI 0.88, 1.26, P = 0.56, I2 = 0% 95%CI 0%, 87.3%). Individual study estimates were RR 1.19, 95%CI 0.86, 1.65 for Dodoo et al (1999)


[41] ADDIN EN.CITE , 0.94, 95%CI 0.73, 1.21 and 1.19, 95%CI 0.78, 1.81 for Egan et al (1996)


[36] ADDIN EN.CITE  in Sierra Leone and The Gambia respectively. All estimates are unadjusted and were calculated by the current authors by data provided in the paper.
MSP-1-EGF2

Pooled results of MSP-1-EGF1 studies showed no association between antibody responders with protection against symptomatic P. falciparum reRR 0.59, 95%CI 0.19, 1.84, P = 0.37; I2 = 71.4%, 95%CI 2.8-91.6%. Individual study estimates were RR 1.31, 95%CI 0.73, 2.35 for Dodoo et al (1999) 


[41] ADDIN EN.CITE  and 0.46, 95%CI 0.19, 1.09 and 0.08, 95%CI 0.005, 1.19 for Egan et al (1996) 


[36] ADDIN EN.CITE  in Sierra Leone and The Gambia respectively. All estimates are unadjusted and were calculated by the current authors by data provided in the paper.
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